

Requirements for processing data from an AmeriFlux site using ONEFlux

AMP webinar series October 19th, 2020

What to expect

- Logistics
 - About 45 minutes of content, 1 hour total
 - A few stop points through the presentation for quick questions
 - Longer Q&A at the end
 - Live streaming (and recording/slides available at <u>ameriflux.lbl.gov</u>)
- This is not:
 - How to run ONEFlux
 - How to use AmeriFlux / FLUXNET data products
- This is:
 - What is needed to create data products with ONEFlux for an AmeriFlux site
- Familiarity with AmeriFlux data upload process helps (not required)

What to expect

- Logistics
 - About 45 minutes of content, 1 hour total
 - A few stop points through the presentation for quick questions
 - Longer Q&A at the end
 - Live streaming (and recording/slides available at <u>ameriflux.lbl.qov</u>)
- This is not:
 - How to run ONEFlux
 - How to use AmeriFlux / FLUXNET data products
- This is:
 - What is needed to create data products with ONEFlux for an AmeriFlux site
- Familiarity with AmeriFlux data upload process helps (not required)

Danielle Christianson

Housen Chu

Gilberto Pastorello

Dario Papale

Agenda

- ONEFlux overview
- Workflow of a ONEFlux run
- Metadata collection for ONEFlux processing
- Data QA/QC for AmeriFlux BASE data and impacts on ONEFlux runs
- FLUXNET data products created with ONEFlux
- Future of FLUXNET regional and global data products

Agenda

- ONEFlux overview
- Workflow of a ONEFlux run
- Metadata collection for ONEFlux processing
- Data QA/QC for AmeriFlux BASE data and impacts on ONEFlux runs
- FLUXNET data products created with ONEFlux
- Future of FLUXNET regional and global data products

Gilberto Pastorello

FLUXNET Datasets

- Marconi 2000: 38 sites / 97 site-years
 - Data contributed by attendees of workshop
 - Access limited to attendees
- LaThuile 2007: 252 sites / 965 site-years
 - Data contributed by many site Pls
 - Start of uniform code base and processing for comparable data products
 - Data access/usage opened to other users, with some restrictions (three tiers)
 - Over 500 unique users downloaded data
- FLUXNET2015: 212 sites / 1532 site-years
 - Standardized code base (developed in collaboration among networks)
 - Extensive QA/QC of data (data more comparable and usable, but fewer sites)
 - Data access to anyone, usage has fewer restrictions (two tiers) tools to keep track of usage
 - Over 3000 unique users downloaded data
 - NEW (Feb 2020): 206 sites following data policy based on CC-BY-4.0

Eddy Covariance Data Processing

- High-frequency data
 - Alteddy (ALTERRA),
 - EddyPro (LI-COR),
 - eddy4R (NEON)
 - EdiRE (U. Edinburgh),
 - Custom codes
- Data products from fluxes

USTAR filtering, met/flux gap-filling, flux partitioning, uncertainty estimates, etc.

- REddyProc (MPI),
- ONEFlux (AMP/EUDB/ICOS-ETC)
- Custom codes

Eddy Covariance Data Processing

- High-frequency data
 - Alteddy (ALTERRA),
 - EddyPro (LI-COR),
 - eddy4R (NEON)
 - EdiRE (U. Edinburgh),
 - Custom codes
- Data products from fluxes

USTAR filtering, met/flux gap-filling, flux partitioning, uncertainty estimates, etc.

- REddyProc (MPI),
- ONEFlux (AMP/EUDB/ICOS-ETC)
- Custom codes

Why one more software?

ONEFlux is a <u>package</u> of eddy covariance data processing codes

- Extensive validation on many site characteristics
- Focus on creating network-level data products; standardized for synthesis studies and cross-site comparisons

ONEFlux

ONEFlux is a package of eddy covariance data processing codes

Reference paper:

Pastorello, G., Trotta, C., Canfora, E. et al. (287 co-authors). The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data.

Scientific Data 7, 225 (2020).

https://doi.org/10.1038/s41597-020-0534-3

Code available:

ONEFlux Steps

ONEFlux Steps

ONEFlux Steps

01: input (not-quite FP-Standard)

02: flagging/filtering

04: USTAR threshold method 1 (unc.)

05: USTAR threshold method 2 (unc.)

06: downscaling for met gapfilling

07: met gapfilling (MDS + downscaling)

08: NEE filter/storage/unc./ref/gapfilling

09: H & LE corr. factors/gapfilling/unc.

10: NEE partitioning (nighttime method)

11: NEE partitioning (daytime method)

12 (i): create input for 12

12: unc. from multiple USTAR thresholds

99: merge into FP-Standard compliant output

Agenda

- ONEFlux overview
- Workflow of a ONEFlux run
- Metadata collection for ONEFlux processing
- Data QA/QC for AmeriFlux BASE data and impacts on ONEFlux runs
- FLUXNET data products created with ONEFlux
- Future of FLUXNET regional and global data products

Gilberto Pastorello

Workflow of a ONEFlux run

Workflow of a ONEFlux run

Workflow of a ONEFlux run

Workflow of a ONEFlux run (within AmeriFlux Data Processing)

Workflow of a ONEFlux run: Data Products

- QA/QC focus on ONEFlux requirements
- Mostly "footprint-representative" aggregation support
- AmeriFlux production system: ongoing development
- Compatible with FLUXNET2015 dataset

Workflow of a ONEFlux run: Required Inputs

Critical data variables for ONEFlux

Required

- CO2 (µmolCO2 mol-1): Carbon Dioxide (CO2) mole fraction in moist air
- FC (µmolCO2 m-2 s-1): Carbon Dioxide (CO2) turbulent flux (without storage component)
- **SC** (μmolCO2 m-2 s-1): Carbon Dioxide (CO2) storage flux measured with a vertical profile system, optional if tower shorter than 3 m
- H (W m-2): sensible heat turbulent flux, without storage correction
- **LE** (W m-2): latent heat turbulent flux, without storage correction
- WS (m s−1): horizontal wind speed
- **USTAR** (*m s*−1): friction velocity
- TA (deg C): air temperature
- **RH** (%): relative humidity (range 0–100%)
- PA (kPa): atmospheric pressure
- **SW_IN** (*W m*−2): incoming shortwave radiation

Recommended

- **G** (*W m*−2): ground heat flux, not mandatory, but needed for the energy balance closure calculations
- **NETRAD** (W m-2): net radiation, not mandatory, but needed for the energy balance closure calculations
- **SW_IN_POT** (*W m-2*): potential incoming shortwave radiation (top of atmosphere theoretical maximum radiation), calculated based on the site coordinates

Suggested

- **PPFD_IN** (μ molPhotons m-2 s-1): incoming photosynthetic photon flux density
- P (mm): precipitation total of each 30 or 60 minute period
- **LW_IN** (*W m*−2): incoming (down-welling) longwave radiation
- SWC (%): soil water content (volumetric), range 0–100%
- TS (deg C): soil temperature

Critical data variables for ONEFlux

- CO2 (µmolCO2 mol-1): Carbon Dioxide (CO2) mole fraction in moist air - FC (µmolCO2 m-2 s-1): Carbon Dioxide (CO2) turbulent flux (without storage component) - SC (µmolCO2 m-2 s-1): Carbon Dioxide (CO2) storage flux measured with a vertical profile system, optional if tower shorter than 3 m - H (W m-2): sensible heat turbulent flux, without storage correction - **LE** (*W m*−2): latent heat turbulent flux, without storage correction Required - **WS** (*m s*−1): horizontal wind speed - **USTAR** (*m s*-1): friction velocity VPD computed from TA and RH; if - TA (deg C): air temperature - RH (%): relative humidity (range 0–100%) provided, used for validation in QA/QC - PA (kPa): atmospheric pressure - **SW_IN** (*W m*−2): incoming shortwave radiation - G (W m-2): ground heat flux, not mandatory, but needed for the energy balance closure calculations

Recommended

- **NETRAD** (W m-2): net radiation, not mandatory, but needed for the energy balance closure calculations
- **SW_IN_POT** (*W m*-2): potential incoming shortwave radiation (top of atmosphere theoretical maximum radiation), calculated based on the site coordinates

Suggested

- **PPFD_IN** (μ molPhotons m-2 s-1): incoming photosynthetic photon flux density
- P (mm): precipitation total of each 30 or 60 minute period
- **LW_IN** (*W m*−2): incoming (down-welling) longwave radiation
- **SWC** (%): soil water content (volumetric), range 0–100%
- TS (deg C): soil temperature

Support for multiple layers of soil variables (SWC & TS)

Agenda

- ONEFlux overview
- Workflow of a ONEFlux run
- Metadata collection for ONEFlux processing
- Data QA/QC for AmeriFlux BASE data and impacts on ONEFlux runs
- FLUXNET data products created with ONEFlux
- Future of FLUXNET regional and global data products

Danielle Christianson

Metadata collection for ONEFlux processing

BADM = Biological, Ancillary, Disturbance, and Metadata

- Variable Information
- Variable Aggregation (and Representation)

Metadata collection for flux-met data variables

Metadata collection for flux-met data variables

https://ameriflux.lbl.gov/data/data-variable-qualifier-examples/

Variable Information: Height and Sensor Info

https://ameriflux.lbl.gov/sites/variable-information/

All sites are different!

AMP needs to know which variables are representative and/or should be aggregated.

1. AMP will contact you requesting submission via email

- 1. AMP will contact you requesting submission via email
- 2. AMP provides a pre-filled csv file (based on Variable Information and BADM database)

- 1. AMP will contact you requesting submission via email
- 2. AMP provides a pre-filled csv file (based on Variable Information and BADM database)
- 3. AMP provides instructions in the email

- 1. AMP will contact you requesting submission via email
- 2. AMP provides a pre-filled csv file (based on Variable Information and BADM database)
- 3. AMP provides instructions in the email
- 4. Site Teams review, update if needed, and upload the csv file

https://ameriflux.lbl.gov/data/upload-data/ > Choose BADM

AMFVARNAME	AMFMEMBERS	AMFMETHOD	AMFDATE	AMFCOMMENT
Variable Code	list separated by semicolons	LIST(AMF_AGG_METHOD)	YYYYMMDDHHMM	Free text
Required	Required	Required	Optional	Optional
C02	C02_1_1_1	Individual		
FC	FC_1_1_1	Individual	100	
sc	SC_NA	SC_NA		
TA	TA_1_1_1	Individual	ti.	
TA	TA_1_1;TA_2_1_1	Mean	201504121200	
WS	WS_1_1_1	Individual		
G_1	G_1_1_1;G_2_1_1;G_3_1_1;G_4_1_1	Mean		
SWC_1	SWC_1_1_1; SWC_2_1_1; SWC_2_1_2	Mean		AMP: No depth info; please double check

Varname

Variable to be used in ONEFlux processing.

MEMBERS

MEMBERS variable(s) must match variables in the site's BASE data product.

AMFVARNAME	AMFMEMBERS	AMFMETHOD	AMFDATE	AMFCOMMENT
Variable Code	list separated by semicolons	LIST(AMF_AGG_METHOD)	YYYYMMDDHHMM	Free text
Required	Required	Required	Optional	Optional
C02	C02_1_1_1	Individual		
FC	FC_1_1_1	Individual		
sc	SC_NA	SC_NA		
TA	TA_1_1_1	Individual		
TA	TA_1_1;TA_2_1_1	Mean	201504121200	
wS	WS_1_1_1	Individual		
G_1	G_1_1_1;G_2_1_1;G_3_1_1;G_4_1_1	Mean		
SWC_1	SWC_1_1_1; SWC_2_1_1; SWC_2_1_2	Mean		AMP: No depth info; please double check

METHOD Options

- Individual
- Mean
- SC_NA (use only with SC_NA in MEMBERS)

Variable to be used in ONEFlux processing.

MEMBERS

MEMBERS variable(s) must match variables in the site's BASE data product.

AMFVARNAME	AMFMEMBERS	AMFMETHOD	AMFDATE	AMFCOMMENT
Variable Code	list separated by semicolons	LIST(AMF_AGG_METHOD)	YYYYMMDDHHMM	Free text
Required	Required	Required	Optional	Optional
C02	C02_1_1_1	Individual		
FC	FC_1_1_1	Individual		
sc	SC_NA	SC_NA		
TA /	TA_1_1_1	Individual	1	
ТА	TA_1_1;TA_2_1_1	Mean	201504121200	
wS	WS_1_1_1	Individual		
G_1	G_1_1_1;G_2_1_1;G_3_1_1;G_4_1_1	Mean		
SWC_1	SWC_1_1_1; SWC_2_1_1; SWC_2_1_2	Mean		AMP: No depth info; please double check

METHOD Options

- Individual
- Mean
- SC_NA (use only with SC_NA in MEMBERS)

Review Variable Aggregation (AMF_VAR_AGG) csv file

Storage is important

OR

Storage is negligible

Agenda

- ONEFlux overview
- Workflow of a ONEFlux run
- Metadata collection for ONEFlux processing
- Data QA/QC for AmeriFlux BASE data and impacts on ONEFlux runs
- FLUXNET data products created with ONEFlux
- Future of FLUXNET regional and global data products

Housen Chu

Observational data patterns for time series data quality assessment *Pastorello, G. et al., 2014.,* Proc. 10th IEEE International Conference on e-Science, Sao Paulo, pp. 271-278, doi: 10.1109/eScience.2014.45

Issues	Descriptions	Source	es		Corrections															
Windowed varying maximums	levels of values at higher end varies more than expected for natural variability	sensor malfunc cumulation; po noise and spike	or filter			correct calibration; redo de- spiking from original data		to produce the second contract of the second												
Trend in minimums	noticeable increasing or decreasing trend in lower end of vales within a time window	sensor deg			1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007-	2008	2009		
Trend in maximums	noticeable increasing or decreasing trend in higher end of vales within a time window	sensor deg	2)	1000 -					•		ï				i					
Measurement interval filter	data filtered for one or more ranges of values (e.g., values between x and y are removed)	incorrect fi		600 -	4	1	À	ż		i		Ž.	ij	1		Ä				
Measurement cutoff filter	data at points higher (or lower) than a threshold are removed (e.g., values larger than x are removed)	incorrect fi	ion (400												-1:6				
Inconsistent noise levels	time series has different levels of noise that are not usually explained by sensor, measurement, or processing variability, especially very low noise periods	indirect est based gap- processing: filtering	Net Radiation (W	200 -					1							for	m	ent lo axim inim	um	S
Repeating pattern	repetition of exact pattern throughout short or long time windows	indirect est based gap- processing		-200							i'		yr v							_
Physically unlikely ranges	range of values for a period within available data has unlikely values (either because it's out of physically possible values or because it grossly mismatches general trend)	sensor ma sensor; wro efficient ap					T	ime	e –	14	yea	ırs (199	96-	200)9)				

- Timestamp shift check
- Physical range check
- Diurnal & Seasonal pattern
- Multivariate comparison
- USTAR filtering check
- Variable availability

- o Timestamp shift
 - Timestamp shift
 - Daylight saving time
 - Data stream not synchronized
 - Time zone specification

Max Diurnal Pattern

- o Physical range check
 - Physically unlikely values
 - Outlier
 - Inconsistent noise levels / filtering
 - Trend
 - Step change in full range
 - Change of resolution
 - Repeating patterns / constants
 - Long gaps
 - Measurement cutoff filter
 - Other unrecognized pattern

Physically plausible range Network-wise historical range

- o Diurnal & Seasonal pattern
 - Physically unlikely values
 - Outlier
 - Sign convention
 - Step change in full range

Mean Diurnal Pattern

- o Multivariate comparison
 - Outlier
 - Variables not synchronized in time
 - Step change in full range
 - Trend
 - Shaded radiation
 - Derived one from other

- PPFD_IN vs SW_IN
- TA vs T_SONIC
- WS vs USTAR
- Cross-level:
 - TA profile

- o Variable availability
 - Long gaps
 - Missing mandatory variables
 - Inconsistent variable naming / qualifier / aggregation

No measurement

Variables not provided

Data QA/QC for ONEFlux

Important variables

Required	Recommended	Suggested
FC	NETRAD	WD
CO2	G	Р
SC		PPFD_IN
USTAR		SW_OUT
WS		LW_IN
SW_IN		LW_OUT
TA		SWC
RH		TS
LE		
Н		
PA		

- Critical issues affecting processing
 - Timestamp shifts
 - Flux variables being filtered using USTAR thresholds
 - Trend or step change in radiation variables
 - Large outliers, esp in flux variables

Agenda

- ONEFlux overview
- Workflow of a ONEFlux run
- Metadata collection for ONEFlux processing
- Data QA/QC for AmeriFlux BASE data and impacts on ONEFlux runs
- FLUXNET data products created with ONEFlux
- Future of FLUXNET regional and global data products

Gilberto Pastorello

FLUXNET data products created with ONEFlux

NEE (µmolCO2 m-2 s-1), hourly

NEE (gC m-2 y-1), yearly

GPP (gC m-2 y-1), yearly

NEE (gC m-2 y-1), yearly

RECO (gC m-2 y-1), yearly

LE (W m-2), hourly and yearly

ERA Downscaling

(ERA-I) 1989-2019→(ERA5) 1979-Now

ERA Downscaling

(ERA-I) 1989-2019→(ERA5) 1979-Now

Examples using FLUXNET2015 dataset

ERA Downscaling (ERA-I) 1989-2019→(ERA5) 1979-Now US-Var TA_ERA m=0.0474 Slopes

AU-Tum TA_ERA m=0.0336

y = mx + b

Examples using FLUXNET2015 dataset

Agenda

- ONEFlux overview
- Workflow of a ONEFlux run
- Metadata collection for ONEFlux processing
- Data QA/QC for AmeriFlux BASE data and impacts on ONEFlux runs
- FLUXNET data products created with ONEFlux
- Future of FLUXNET regional and global data products

Dario Papale

Future of FLUXNET regional and global data products

Q&A

Thank you!

Questions?

Pastorello, G., Trotta, C., Canfora, E. et al. (287 co-authors). The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data.

Scientific Data **7**, 225 (2020).

https://doi.org/10.1038/s41597-020-0534-3

Code available:

https://github.com/FLUXNET/ONEFlux

Contact us: ameriflux-support@lbl.gov